
NASA Technical Memorar dum 4027

On the Diagnostic

Emulation Techfiique

and Its Use in thi_
AIRLAB 0°

.... _-_ I[

Gerard E. Migneault

OCTOBER 1988

HIIoO

Uncla_

016_928

...... i.. ZZZ i

NASA Technical Memora, Mum 4027

On the Diagnostic
Emulation Technique

and Its Use in th e

AIRLAB

Gerard E. Migneault

Langley Research Center

Hampton, Virginia

National Aeronautics

and Space Administration

Scientific and Technical

Information Division

1988

=

#

__. m_.

NASA Technical Memora ia_um 4027

E

f

2..... _

.... 7 _

• F.

On the Diagnost_
__ i_: -_

Emulation °_"Techqlque
_ i

and Its Use in-th_
AIRLAB _!|

Gerard E. Migneault

OCTOBER 1988
J

i

_ p CSCL 09B
Unclaa

fll/o0 016_928

i -

NASA Technical Memorar, dum 4027

On the Diagnostic
Emulation Technique

and Its Use in the

AIRLAB

Gerard E. Migneault

Langley Research Center

Hampton, Virginia

National Aeronautics

and Space Administration

Scientific and Technical

Information Division

1988

Preface

This document is intended primarily as an aid f4,r understanding and judging the relevance

of the "diagnostic emulation technique," developed at the Langley Research Center, to

studies of highly reliable, digital computing systems for aircraft. Therefore, the document

contains a short review of the need for and the use of the technique as well as an explanation

of its principle of operation and its implementatic,n. However, details that would be needed

for operational control or modification of existing versions of the technique are described in

NASA CR-178391 by Becher (1987).

The Introductory section contains a descript,on of the need (and origin of the need)

for an emulation technique in the Langley Avio]dcs Integration Research Lab (AIRLAB).

The section on The Technique contains a concise description of a conceptual algorithm for

emulating a computational process, a more length y description of the actual implementation

of the conceptual algorithm, and a summation of _ihe implemented features of the technique.

Appendixes A to D contain details of the technique.
The document has been organized to be read at the following levels of detail:

1. The main points of the document can be t.:)und in the main text alone (presented in

the left column of each page), without reference "o the footnotes or appendixes.

2. The footnotes to the main text (presented in the right column of each page) are

intended to either expand upon or clarify a point in the main text, but not to provide more

detail.

3. The appendixes explain how and why spec ific gate logic algorithms work.

4. There are footnotes to the appendixes _presented at the bottoms of the pages)

describing more specific details.

iii

Summary

This documentis intendedprimarily as an aid
for understandingandjudgingthe relevanceof the
"diagnosticemulationtechnique,"developedat the
LangleyResearchCenter,to studiesof highly reli-
able,digital computingsystemsfor aircraft. There-
fore, the documentcontainsa short reviewof the
needfor andthe useof the techniqueaswell asan
explanationof its principleof operationandits im-
plementation.However,detailsthat wouldbeneeded
for operationalcontrolor modificationof existing
versionsof the techniqueare describedin NASA
CR-178391byBecher(1987).

Introduction

The validation of highly reliable, fault-tolerant

computers is an important and, at the very least,

difficult task in the development of digital comput-

ing systems for aircraft. The reasons are evident.

On the one hand, demand for safety imposes an ele-

vated, minimally acceptable level of reliability on any

system whose failure could cause fatalities; on the

other hand, uncertainty about the relationship be-
tween malfunctions of an aircraft's computing system

and catastrophes involving the aircraft makes any

precise specification of a minimally acceptable level

of reliability problematic. To be generally accept-

able, any posited, minimum level of reliability of a

computing system must be conservatively elevated to
such an extent that the reliability of currently avail-

able components is inadequate for constructing con-

ventional (i.e., fault-intolerant) computing systems.

Consequently, a need arises naturally for computing

systems designed to tolerate their own (i.e., internal)
faults and malfunctions. 1

However, fault tolerance does not obviate the

need for assessing reliability. "Fault tolerant" is

but a cachet for systems designed to continue func-

tioning after some internal (and necessarily superflu-

ous) components cease functioning properly; that is,
the systems are designed to contain and make ad-

vantageous use of redundancies to provide alterna-

tive means of performing their functions. 2 With lim-
ited resources in a limited interval of time there can

be only a limited number of available alternatives.

Clearly, when the set of alternatives, each fault in-

tolerant, has been depleted, the system fails. 3 Thus,

and also clearly, a fault-tolerant system has an asso-

ciated level of reliability that must be evaluated to

ensure that it equals at least the minimally accept-
able level.

There is also an added complication that accom-

1 In the literature, the value 1 - 10 -9 has become a somewhat

de 'acto standard for the minimum acceptable level of reliability

of-. civil aircraft's computing system (for a flight duration of

10 hours) if it performs tasks crucial to flight. For military

air, raft, requirements for reliability of computing systems hover

abe ut the value 1 - 10 -7 for a mission. However, the need

for innovative designs for systems does not arise only from such

ext eme requirements; less stringent levels of reliability would still

be beyond the sure reach of computing systems that are intolerant

of _;mlts.

To be sure, some critics consider the attainment of

ult .areliability to be infeasible at best and the resulting schemes

for fault-tolerant computers as "redundancy "run amok" " (e.g.,

see pp. 220-222 of Goldberg 1981). For an abbreviated rationale

for the value 1 - 10 -9, see Migneault (1980).

2Redundancy can be physical, temporal, logical, or any corn-

bit ation of these three--physical, as in parallel, replicated mod-

ulefi temporal, as in repeated attempts of the same computa-

tio_al process; and logical, as in dissimilar algorithms for the

sa_e functions or processes, whether they are implemented phys-

icaly, temporally, or in combination. Each form of redundancy

ad_tresses some causes of failure better than others.

Of course, once elements are called into play to tolerate

fat Its, they can no longer be considered redundant; that is,

here the meaning of redundancy is conditional on the absence

or presence of faults. For an exposition of fault tolerance----one

wt ich, however, lacks a satisfactory discussion of the relationship

to reliability----see Anderson and Lee (1981).

3Casually stated, the probability that a fault-tolerant system

fais because of the depletion of its set of alternatives in a stated

int _.'rval of time is equal to the nonzero product of the probabilities

of failure of the separate, needed, redundant resources, with the

as_ umption of uncorrelated failures. ("Casually stated," because

th. word failure is used loo6ely here to encompass both an event

(i..., a component becoming a failed component at a particular

in.' tant) and a state (i.e., a particular, failed condition in which

th' component is assumed to operate only improperly). More

co rectly stated, however, a failure is only an event. Moreover,

in general a failed state does not imply necessarily improper

be lavior; it is, rather, the unfailed state that implies necessarily

pr)per behavior.) Note also that the probability of failure of

an alternative includes the possibility that its function is not

performed within specified intervals of time, even in the absence

of any tangible failures. That is, consistent with footnote 2, an

in erval of time can be considered to be effectively a consumable

re ource.

panies the use of fault tolerance. A fault-tolerant

system could be less reliable than straightforwardPl_EICj_/)_(} l_2t_E _[,A_'_ NOT F[L_D

consideration of its set of redundant resources might

reveal because, in addition to the redundant re-

sources, a fault-tolerant system contains a means

(here called "the mechanism") for composing the sys-
tem's output from the outputs of its parts, whether

or not some are faulty. In effect, the mechanism em-

bodies the intelligence by which redundancy is put

to effective use to provide the fault tolerance that is

intended to increase reliability. Yet, the mechanism

also contributes to lessened reliability in two ways;

one of these is difficult to evaluate. First, there is

the conventional effect upon reliability of an added,

fault-intolerant component, that is, the mechanism.

Evaluation of this effect poses no different challenge

from that due to any other component of the sys-

tem; indeed, fault tolerance can be designed into the
mechanism also. 4 More difficult to evaluate, however,

is the probability that a mechanism's design is flawed,
so that in some situations it will not respond prop-

erly to some failures of components despite the avail-

ability of functioning, alternative resources. That is,
what is at issue here is the possibility that there are
modes of failure that have been overlooked or incom-

pletely understood by designers of the system. But
how does one estimate the probability of things un-

thought of? 5

Ordinarily (i.e., for pedestrian, fault-intolerant

systems for which reliability requirements are suffi-

ciently benign), enough testing of the systems can be

performed without knowledge of internal structure

(i.e., "black-box" testing) to justify an assumption

that the effect of any residual design flaws on re-

liability is negligible compared with chance failures

resulting from degradation of components. Thus, or-

dinarily, the problem of design flaws is handled by the
elimination of such flaws as they are discovered--that

is, by the removal of all but the (assumed) statisti-

cally insignificant, unobserved flaws from the system.

If, however, they are to be even only approximately

achieved, the elevated levels of reliability required,

the raisons d'etre, of fault-tolerant systems preclude

the possibility of generating enough data by black-

box testing of systems to justify the same assumption
with the same credibility, with the same statistical
methods. 6

As a substitute for sufficient, complete, and

exhaustive--hence, infeasible--testing of such sys-

tems, more sophisticated methods of analysis are

used, namely, techniques of modelling and analyz-

ing the behavior of complex systems as stochastic

processes. Models are constructed to represent the
behavior of systems by an identification of the possi-

ble, significant states systems could assume and by a

similar identification of significant transitions among

the states. (In particular, transitions representing

4Here is an instance of what might be called "redundancy run

amok" (see footnote 1), for redundancy within the mechanism

appears to call for either a recursively functioning mechanism

or a meta-mechanism overseeing use of the redundancy within

the mechanism--and where is fault tolerance to end? For a

resolution, see the use of local and global executive functions

in the SIFT (Software Implemented Fault-Tolerant) computer

system described by Wensley et al. (1978).

5A design flaw in the mechanism is more pernicious than a

simple, latent fault that, be it a design flaw or a physically de-

graded component, lies dormant until an unlikely situation awak-

ens it. Such latent faults can by chance surface effectively simul-

taneously with other faults and become part of a simultaneous-

failure (i.e., multifailure) event--but not necessarily. Design flaws

in the mechanism, however, belong to the more special class of

latent faults that become active when, and only when, certain ac-

tivating failures occur; therefore, such flaws necessarily are part

of multifailure events_vents for which, by the nature of the de-

sign flaws, no fault-tolerating mechanism has been specifically

designed. Thus, although the rates of occurrence of failures may

have been estimated and turned into estimates of the rate of

depletion of viable alternatives, estimates of the probability that

a fault-tolerant system will continue to function after simple fail-

ures remain problematic and involve an additional analysis of a

conditional probability called a coverage function.

6A test rig containing" 1000 independently operating, h/gh/y

reliable fault-tolerant systems serviced approximately every

10 hours to replace failed components can be expected to function

for decades (the number depending upon the specific reliability

criterion) before even the first system failure will be seen. Clearly,

neither such a number of systems nor the time on test would be

economically feasible, and any feasible amount of testing would

be inconclusive-unless, of course, the systems failed miserably.

malfunctions of the fault-tolerance mechanisms can

be included). The stochastic nature of a system's be-
havior due to the chance presence or absence of faults

is then represented in the form of parametric, func-

tional expressions associated with the (conditional)

probabilities of the various transitions. One benefit

gained by the use of the models is evident. Assess-
ment of a systems's reliability is reduced to the solu-

tion of mathematical equations implied by the corre-

sponding model 7-but only after a leap of faith has
been made. One must believe that a model faith-

fully expresses the stochastic nature of the system

in question, for although precise statements can be
made about the accuracy and precision of the math-

ematical techniques, the credibility of any reliability

assessment hangs upon the inaccuracies and impre-

cisions of the models.

Thus, the determination of the inaccuracies and

imprecisions of a model becomes an important task
to which testing and experimentation can (indeed

must) be applied. Now, however, testing can be selec-
tively focused to obtain, verify, or clarify knowledge
of those states, transitions, and associated functional

expressions that are most significant or uncertain in
the model. The nature and number of faults to be

considered in the analysis of highly reliable systems,

however, still make testing on actual systems imprac-

tical. Consequently, it is convenient to use abstract

representations, such as computer simulations, as
surrogates for the real systems, s Clearly it is advan-

tageous that a surrogate truly represent the internal
structure of the system being analyzed, for then, if

instrumented enough, a surrogate can serve not only

as a generator of data from which the parameters of
the functional expressions can be estimated but also

as a serendipitous means of unearthing unanticipated

behavior (i.e., a means of finding unforeseen transi-
tions not included in the stochastic process model).

Some History of This Implementation

The core of the technique, the gate logic level

algorithm described in the following sections, was

first implemented in 1976 as a computer program in
FORTRAN on mainframe computers in order to ver-

ify (and demonstrate) the correctness of the algo-
rithm in emulating a complete processor running

its own program. A (hypothetical) 16-bit micro-

processor was specially defined to play the role of a

computer being emulated, and a program was defined
and coded in the instruction language of the hypo-

thetical microprocessor. After the successful verifi-

cation of the algorithm, the computer program and

the hypothetical microprocessor were immediately

used to perform a small pilot experiment in "stuck-
at" fault detection. 9 Subsequently, the feasibility of

7CARE III and SURE, for example, are computer codes

de eloped for NASA for analyzing a large class of such models.

Se, Bavuso and Petersen (1985) or Butler (1984).

8There are two obvious advantages to the use of abstract sur-

rot ates: they involve no physically destructive failure actions, and

th, y can be automated on computers (and thus require less setup

tit ,e between failure cases--possibly the most time-consuming as-

pe.:t of laboratory experimentation). The disadvantage, of course,

is .hat they require an additional level of verification to be sure

th tt they are truly surrogates for the systems under study.

9For a description of the experiment and its results, see Nagel

(1 ,78).

3

speedingup the algorithmby the useof a horizon-
tally microprogrammedcomputerwasexaminedin
a contractorfacilityhavinga horizontallymicropro-
grammablecomputer,andasurveywasmadeofcan-
didatemicroprogrammablecomputersystems.10

The techniquehasalso beenusedto emulate
the CPU of a Bendix BDX-930processor,11 the
processorusedin the SIFT system. (SeeWensley
et al. 1978.) As the emulationwasan in-house
projectto evaluateimplementationof thetechnique
on thehorizontallymicroprogrammablecomputer(a
NanodataComputerCorporationQM-la computer)
at theLangleyResearchCenter(LaRC)ratherthan
a studyof theBDX-930processor,it wasnot docu-
mentedforpublicdissemination.Theprojectdemon-
stratedthat the versionof the emulationtechnique
implementedonthehorizontallymicroprogrammable
computeris about 35 to 40 timesfasterthan an
equivalentversionimplementedona Digital Equip-
ment CorporationVAX-11/750computer(the gen-
eralpurposecomputerin AIRLAB) andis approxi-
mately2×104timesslowerthantheactualBDX-930
processor.

The versionof the emulationtechniqueon the
VAX-11/750computerhassincebeenusedin acon-
tinuing universitygrant study of gate-logicfault
behavior,a study actuallyperformedby graduate
studentsusingthe techniqueremotely.12Recently,
the techniquehasbeenusedto evaluatethe self-
diagnosticcapabilityof thefault-tolerantvotermod-
uleof afault-tolerantprocessordesignstudy.13

The Technique

General Concept

The computational process in a logic network

can be considered to be a process of successive, re-
lated perturbations in a medium that is almost in

equilibrium. 14 As a result, the emulation task can be

viewed as a task of generating the successive states of

such a perturbation process. This view has two use-
ful properties. First, since elements that remain in

equilibrium at an instant in a perturbed medium are

not active components of the perturbation process at

that same instant, an algorithmic representation of

the process is an efficient scheme for simulating be-
havior of a network--if most of the network's pattern

of signals is in equilibrium at most instants of time,
as is usually true for a logic network. Second, since

the data anomalies caused by external agents and

the effects of physical failures also appear as pertur-
bations (albeit seemingly spontaneous from the view-

point of a computational process 15 and, in the case of

physical failures, more precisely considered as meta-

perturbationsl6), an algorithmic representation of a

l°The feasibility study and survey are documented in Martin

Marietta (1981). The survey of candidate microprogrammable

computer systems appeared in the form of an interim report

several years earlier and served as a basis for procurement of

the microprogrammable computer used at the Langley Research

Center (LaRC). The interim report appears as attachment 1 of

Martin Marietta (1981).

11 The BDX-930 CPU contains 3000 to 4000 gate equivalent

devices. The gate-logic description of the processor was obtained

from Bendix Corp. and is documented in Swern and McGough

(1982). Of course, the gate level description is now also avail-

able directly from the computer files that serve to input to the
emulation technique.

12 Initially the study concentrated upon the error propagation

from the gate to the pin level on a chip. The study is described in

Lomelino and lyer (1986). In the continuing study, the emulation

technique was interfaced with a circuit-level simulation in order

to examine error behavior in finer detail.

13The analysis of the self-diagnostic capability was done

at Research Triangle Institute and is documented in Baker,

Mangum, and Scheper (1988).

14The notion that computation in a logic network is analo-

gous to a perturbation process comes from the following obser-

vations. First, it is possible to describe a logic network in terms

of elementary devices (e.g., logic gates or transistors) which con-

stantly (attempt to) maintain an output signal consistent, in some

prescribed manner, with their input signal(s). That is, each de-

vice acts as a local equilibrium-restoring force. Moreover, there

is some time delay, however small, between the occurrence of

a change in an input signal and a related change to an output

signal--in light of which the value of a device's output signal

may be considered to be a reaction after a discrete interval of

time to a perceived inconsistency between its output and input

signals. Consequently, a pattern of output signals of the devices

in a network is clearly in equilibrium when the output signal

of each (and every) device is consistent with its input signal(s).
Furthermore, in the absence of seemingly spontaneous effects or

arbitrary changes to signals caused by external agents or devices,

since every input signal is an output signal of some device, there

is no mechanism to disturb equilibrium. Second, the notion of

computation within a network is incompatible with the notion

of undisturbed equilibrium. Therefore, computation implies that

there must be at least some local instance(s) of disequilibrium

(i.e., inconsistency) somewhere in the pattern of signals. However,

as noted, the nature of the elementary devices is to react to ev-

ery local instance of inconsistency, eliminating the inconsistency

but necessarily further perturbing the pattern of signals in the

process. Thus, computation proceeds as a process of successive,

related perturbations about an elusive condition of equilibrium.

15While the term "spontaneity" of perturbations due to

failures and anomalies implies that they do not arise from

mechanisms within the computational process, it is only the

initial, "spontaneous" perturbations that are the doings of a

deus ex machina. Subsequent perturbations, if any, arise from

the mechanisms of the computational process.

16,Meta.perturbations,, correspond to sudden, spontaneous

changes to the rules of the process; perturbations, whether spon-

taneous or not, do not. Meta-perturbations occur because the

logic network is suddenly, "spontaneously" different as the re-

sult of a physical failure (or failures). There may or may not be
accompanying perturbations.

perturbation process easily accommodates the inclu-
sion of failures and anomalies into a simulation.

Algorithmic representation of the perturbation

process is conceptually straightforward:

From two lists of future perturbations (one

list, constructed by this very algorithm, in
which each item describes a perturbation and

its time of occurrence; a second list, created

externally, in which each item describes a

"spontaneous" perturbation, or meta-

perturbation, and its time of occurrence) all
items with a common, earliest time are ex-

tracted. This time is recognized to be, by con-

struction, the present moment, the "now," of

the perturbation process. The extracted items

represent the state of the process at the mo-

ment (plus any meta-perturbations represent-

ing effects of physical failures also occurring at

the moment).

Then, all consequences of any meta-

perturbations just extracted are determined--
from rules 17 that are either contained in a sep-

arate list of rules governing perturbations or

specified within the identification of the meta-
perturbation itself. Since meta-perturbations

represent changes to the rules governing the

perturbation process, their primary conse-
quences are modifications to some of the items
in the list of rules. Secondary consequences of

meta-perturbations are related perturbations

that are added, as a function of their time

of occurrence, either to the list of future per-
turbations or to the set of perturbations just

extracted. (Some of these new perturbations

may simply cancel out perturbations already

listed.)

Finally, all consequences of the perturba-
tions in the set just extracted (and possibly

just augmented) are determined from the rules

(possibly just modified) and added to the list
of future perturbations. (Again, some of these

new perturbations may simply cancel out per-

turbations already listed.)

Repeated use of this algorithm can generate the
successive states of the perturbation process. Con-

ceptually! Note that the algorithm only extracts
items from the list of spontaneous perturbations.

However, there is nothing to prevent items from be-

ing added by another mechanism, say, another algo-

rithm playing the role of a deus ex machina. (See

footnote 15.)

The algorithm accommodates as fine a fidelity

of representation as desired--at a cost, of course.

Indeed, the algorithm includes, as a special case,

17Each rule is simply an algorithm for modifying itself or

(ther rules in the list of rules governing perturbations, or it is

;,n algorithm for computing whether or not the current output

_"ignal of a connected, elementary device is consistent with its

I uewly changed) input or will be perturbed at some future time.

Note that the logical values of the output signals of elemen-

1ary devices (i.e., as seen by a computational process) correspond

to mutually exclusive ranges of some physical property (e.g., an

_utput voltage) of the devices. By construction, the number of

)gical values of a device's output signal is finite. For example,

rl Boolean logic the number is nominally two, corresponding to

"RUE and FALSE.

Of course, real hardware is somewhat more involved than

: he unequivocal definitions of Boolean logic imply. Since in any

eal device there will be some internal signal noise, there must

,e an allowance made for a finite separation between two ranges

hat carry the logical values--if the meaning of the ranges is to

,e unequivocal. From the point of view of Boolean logic, such

tn intermediate range has no meaning and its existence is not

ecognized. Yet it is there. Clearly, in changing from one logical

tate to another (say TRUE to FALSE), the output signal of a

levice must, however fleetingly, take on values in such a region

J limbo between TRUE and FALSE. Hence, a more faithful

nodel of the physical behavior of an elementary device (say a

_ogic gate) would have to account for such a "meaningless" range.

:,ome simulation schemes do. Indeed, some simulation schemes

onsider subdivisions of this "meaningless" range in order to

:epresent different, possible characteristics of transitions between

he ranges that carry the logical values.

Although the conceptual algorithm accommodates simulation

tetails down to the level of differential equations (actually, repre-

sentation by difference equations) of electrical circuit analysis, the

mplemented versions of the gate logic algorithm within the diag-

nostic emulation technique do not model the transition phase be-

ween the two (Boolean) ranges of the output signals of properly

unctioning devices. That is, a device's output signal is considered

o be either greater than a certain threshold level, representing

me of the logical values, or less than a lower level, representing

he complementary logical value. With the exception of one de-

_'ice, the tri-state, the possible occurrence of an output signal that

orresponds to neither TRUE nor FALSE is considered faulty be-

'_avior and accommodated separately. For the modelling of the

ri-state device, see appendix C.

The preceding discussion does not mean that the imple-

nented versions cannot accommodate fine detail. They can, but

o do so they require additional "user definable" functions, as

tescribed in the next section.

simulation according to the differential equations of

electrical circuit analysis. (See footnote 17, especially
the last two paragraphs.) That is, fidelity can be

increased by subdivision of the elementary devices

into ever more elementary subdevices (i.e., by iden-

tification of more possible perturbations and more

perturbation rules). Such a process of refinement

leads eventually to a set of relationships correspond-

ing to difference equations representing the differen-

tial equations for currents and voltages in elements

of the electrical circuits that compose the network.
But, of course, such a refinement would mean that an

interval of simulated time would contain more events

(perturbations) whose consequences would need to

be determined, and more resources would be required

for the simulation. In general, therefore, simulation

at the level of differential equations is feasible only
for networks that are quite small.

Note, however, that from the perspective of a per-

turbation process there is no need to impose a uni-
form level of fidelity of representation over an en-

tire logic network. The trade-off between fidelity

and resources (mainly real simulation time) can dif-
fer for different portions of the network being sim-

ulated simply by appropriate definition of the per-
turbation rules that apply to the various devices of

the network. Moreover, the rules can be varied by

the meta-perturbation mechanism. That is, there is

naturally embedded within the algorithm a means of

dynamic control of multiple levels of fidelity across
a network in order to minimize resources needed at

every moment during the simulation.

Implementation

The diagnostic emulation technique actually con-
sists of several algorithmic schemes which, although

highly intertwined, are separately describable accord-

ing to their distinct functions. Similarly, there are

several data structures that are shared by the coop-

erating algorithms. The technique derives its name

from one of the schemes, admittedly not the most

central of the algorithms, that simply emulates a net-

work of logic gates and flip-flops (and a few other
devices). At the gate level of description, local man-

ifestations of many isolated physical defects can be

represented as logical symptoms is that can then be
inserted into an emulation to determine their subse-

quent effects upon the rest of a digital system without
having to increase the level of detail. The identifi-

cation of potential physical defects and their corre-

spondence to logical symptoms is not, however, an

element of the diagnostic emulation technique; it is,
rather, a precursory task.

An equally significant feature of the technique

is the algorithmic scheme for linking combinations

6

lSpossibly the most widely discussed type of fault is the

"stuck-at" fault, that is, when a physical defect is determined

to affect a gate by causing its outputted quantity to be stuck

at some value and is interpreted, on the logical level, as a

particular logical value. The stuck-at fault is popular because

it is convenient to handle, simulate, analyze, etc. Admittedly it

is not adequate for representing the manifestations of all physical

defects of digital systems. For example, logical representations of

some (not necessarily extensive) defects can call for redefinitions

of significant portions of the networks of the logic devices.

of emulation and simulation algorithms. 19 From the

previous discussion of the conceptual algorithm, it
should be clear that various parts of a system can be

represented at different levels of detail (as appropri-
ate to an efficient use of the emulation technique).

However, the efficiency of this multilevel feature de-

pends upon the use of particular data structures, 20
called "actions, ''21 that govern the scheduling and

occurrence of events. While some actions are pre-

defined (e.g., those for simulating fetching from and
storing into memory), the data structures have been

chosen, among other reasons, to allow the creation
of new actions by users and, thus, the creation of

new fault and failure types and linkages for inter-

facing other emulation and simulation schemes when

desired.

Figure 1 shows the major functional groupings of

the algorithms that comprise the technique. Their
titles are clearly descriptive. Also clearly, emulation

at the level of gate logic is only one element; it is

capable of playing a principal or secondary or even
minor role in emulations and simulations.

Notice that in addition to the algorithms that

function during the emulation process, the technique

includes preprocessing functions--for translating de-

scriptions of systems to be analyzed into the formats
of the necessary data structures, for automatically

generating consistent sets of initial values for the out-

puts of the devices of systems, and for generating the
data structures used to map (i.e., associate) emulated

and simulated hardware to the hardware of the real

host system.

Functionalemulalion

algorithms
and simulations

Gate logic

emulation

algorithm

t Emulated/real

Electrical '"' host hardware

circuil inlerfacing

simulalions algorithms

Emulation process algorilhms

Data structures

describ4ng-
nelworks

perturbations
actionsJevents
embedded SAN

laults
external I_0 and

diagnostics

Preprocess algorithms

Figure 1. Components of diagnostic emulation technique.

The gate logic algorithm uses five data structures

to represent a logic network and its behavior: two
contain perturbations, one contains output signals,
one contains network structure, and one contains

pseudo registers. The two smallest structures each
contain a list of perturbations occurring at an instant

19Questions often arise about the nuances of the words

em _lation and simulation. In general usage, both words denote

the imitation of one person, thing, etc., by another; simulation,

ho_ ever, especially connotes likeness, whereas emulation connotes

bet ierment. In computing matters, simulation is the general,

no] specific term. For example, in a general sense, CARE [II (a

re]: _bility analysis code; see Bavuso and Peterson 1985) simulates

th(failure process of a system. Obviously, no real physical

faii_lres occur; there is a limit to the verisimilitude of a simulation.

Sir dlarly, when a computer code written for one computer (A) is

int._rpreted by code in another computer (B), so that computer B

pr, duces the same results (when viewed by an external observer)

as would computer A, then computer B is said to "simulate"

co_aputer A. However, there is a special case in which computer B

pc;forms in an algorithmically identical fashion each internal

op,_ration that computer A would perform. This special case is

ca Ied "emulation." It is most efficiently achieved by microcoding.

Other things being equal, one would expect microcoded em-

uL tion to provide for faster operation and simulation to provide

fo_ easier implementation. Other things are not always equal.

Modern computers whose instruction sets are defined by mi-

cr. ,code in the hardware are simply emulations, simply roles acted

oLh to a microcode script by the underlying hardware. At a mo-

rn :nt's notice, the script could change and the actors could take

ol other roles. Thus, a manufacturer can offer a seemingly new

cc nputer by merely changing the internal microcode without

h_ ring modified one element of the underlying hardware.
20For items of information in a computer to be manipulated

m_aningfully, they must be organized (i.e., logically ordered)

in a manner consistent with the rules, the algorithms, that

g_ vern their manipulation. The rigid orderliness of the items of

in ;ormation in a computer is what is referred to by the term "data

st :ucture" in the jargon of computer science. There is always a

c(nsideration of efficiency (of operating time, of memory space,

el c.) in the joint choice of data structures and algorithms.
21 "Actions" are particular data structures of the diagnostic

e'_rmlation technique that specify mappings (i.e., correspondences)

b:_tween data structures (that may themselves be actions) and

o,ntrol the sequences of algorithms that transform and transfer

d Lta among the data structures. Such data transformations and

t: ansfers constitute "events," both emulated and real. Actions

s, hedule actions to occur at future times. (And so, indirectly,

t,ey schedule the occurrence of events.) Actions control the

t ansfer of information among different data structures of the

e_ aulation and the real, host hardware; they control the insertion

(_r removal) of faults and control the recording of diagllostic

c!)servations. For example, the mapping of one or more words of

e nulated memory to the real host memory is information specified

[v an action that performs the fetching of data from an emulated

c)mputer's simulated memory. Thus, a set of actions controls the

r inning of an emulation.

of time; one corresponds to the present moment
to, while the other corresponds to a future time

to + 6t, where _t represents the time required to
propagate the perturbations identified in the first
list through the bank of devices identified in the

second list. The data are, of course, simply the

identifications of devices whose output signals change

value at that instant in time. In terms of the general
perturbation algorithm previously described, these

two data structures represent subsets, respectively,
of the list of extracted items and the list of future

perturbations. 22 The third data structure contains a

description of the complete pattern of output signals,

that is, the state of the computational process in
the logic network. The fourth data structure is the

largest and contains a description of the network's

structure, its devices, and their interconnections. In

terms of the conceptual algorithm, this fourth data

structure contains some (but not all) of the rules of
the perturbation process. In particular, it contains

those related to the topology of the network.

The gate level algorithm contains the ammus lor
the process; that is, it contains, within its construc-

tion, the definitions of the equilibrating action of the

different types of elementary, scalar-valued devices,

regardless of where they appear in a logic network.

The set of such devices consists of the various logic

gate types (AND, OR, NAND, NOR, XOR, XNOR),
inverters, buffers, flip-flops, 23 and tri-state devices. 24

It is clear that the gate level algorithm and the
fourth data structure contain a portion of the list

of the perturbation rules (i.e., those pertaining to

gate logic level devices) of the conceptual algorithm.

From the perspective of the gate logic algorithm,
the rules are unchanging since a network's structure

is ordinarily unchanging; accordingly, the gate logic
algorithm alters only (dynamic) signal information

and contains no logic for altering static network-
structure information. 25

The gate logic algorithm operates only upon de-

vices within a prescribed logic network (i.e., that

identified by the fourth data structure)--which may

(or may not) represent the entire system being emu-
lated. Perturbations (signals) that come from outside

the prescribed network (as in fig. 2) appear "spon-

taneously" in the first data structure (i.e., the one
containing items of time to), and the gate logic al-

gorithm operates in the manner of that portion of

the conceptual algorithm that is ignorant of sponta-
neous perturbations. (Appendixes A to D contain

finer details of the algorithm and the modelling of
the elementary devices.)

On the other hand, signals leaving the prescribed
network go into a fifth data structure that contains

fictitious (register) devices. These registers serve to

8

22Here are two constraints on--and therefore, two possible

enhancements of--emulation imposed by the existing versions of

the diagnostic emulation technique. First, the existing versions

(i.e., on the VAX-11/750 and the QM-1/A computer) treat the

instant t o + 6t as the next earliest time in the list of future

perturbations and, hence, constrain the granularity of simulated

time. But the fidelity of a simulation can be adversely affected

when the granularity is too great (namely, when the order of some

events that are in reality sequential is of some consequence, but

the events appear to be simultaneous because of the granularity

of simulated time). This is indeed possible since the logical

values of the input signals of the devices correspond to ranges

of some physical property, as do the values of output signals

(see footnote 17), and it is virtually impossible that any two

devices having an input signal from a common source could

recognize exactly the same value of the physical property to be

the edge of a range. That is, when examined at a fine enough

granularity of time, one of the two devices will be seen to recognize

a change in the input signal common to both devices before

the other device does. Hence, at a fine enough granularity of

time, no perturbations are simultaneous. In some circumstances,

therefore, it can be necessary to consider events intermediate in

time between t o and tO + tit. In the existing versions, this is only

possible by the introduction of fictitious devices--admittedly an

inefficient ploy. However, the list of future perturbations exists

also in another data structure not used directly by the gate level

algorithms. It would be possible to modify the manner of use of

that data structure in conjunction with the gate logic algorithms

to obtain a finer granularity of time--without having to introduce
fictitious devices.

Second, the restriction to these two data structures means

that all devices are assumed to have the same propagation time,

namely tit. Although this assumption can be relaxed in existing

versions of the technique (again by the insertion of fictitious de-

vices), this is again a cumbersome method, and a more efficient

method for avoiding the assumption of a single, common propa-

gation time would be to increase the number of data structures

containing the lists of perturbations from two to some larger num-

ber that would be unlikely to be exceeded. Of course, the most

general method would dynamically determine the precise number
of data structures needed.

23 More precisely stated--as implemented the flip-flop portion

of the algorithm handles "halves" of flip-flops. See appendix B

(footnote 34) for an explanation of the manner and reason.

24Another basic logic device is the bidirectional switch el-

ement. Because of an oversight in the implementation of the

diagnostic emulation technique, no definition of the equilibrating

action of the switch element was included in the gate logic al-

gorithm. However, such switch elements can be represented--in

either of two ways. Within the gate logic algorithm, a switch can

be represented by a fictitious network constructed from the avail-

able elementary devices. Or, external to and interfacing with the

gate logic algorithm, a switch can be represented by a specially

created action. Admittedly, both representations are inefficient,

especially if many instances of such switches occur in the system

being emulated. Here is another possible enhancement.

25Of course, the data are only static from the viewpoint of

the gate logic algorithm portion of the computational process. As

stated previously, physical failures can (and usually do) manifest

themselves as redefinitions of the perturbation rules and as seem-

ingly spontaneous perturbations (i.e., changes to signal values).

As constructed, the gate logic algorithm and its data struc-

tures do not embody all the possible rules of the perturbation

process. Consequently, only those changes to the rules which ex-

press new network configurations are accommodated. However,
this is a fairly large set. For example, it includes all stuck-at
faults.

Signals to and from the world outside the network

L y The rest of the network 5c_ 5

Figure 2. Sample network of logic devices.

collect and compress the information to be extracted

from the prescribed logic network. Packed informa-

tion is then available for use by other algorithms.

Note that this information may be an integral part

of the emulated system, or it may be diagnostic in-

formation having no inherent use within the pertur-

bation process. For example, a register may con-

tain data which trigger an "action" outside the gate

level algorithm to simulate (at a functional simula-

tion level) a fetch of data from a simulated memory

location. On the other hand, a register may con-

tain data to be printed (by an action devoted to that

purpose) for use in analyzing the emulated system

or, perhaps, for use in analyzing the operation of the

diagnostic emulation process.

A means for controlling the sequence of events is

central to the diagnostic emulation algorithm. Since

each event is the occurrence of a number of actions

(performed by algorithms), control is performed by

naming the actions to be performed at a given time,

the order in which the actions are to be performed,

the identification of the algorithms that perform the

actions, identification of the parameters and vari-

ables to be used by the algorithms, and by the activa-

tion of the algorithms accordingly. But note that this

control process is precisely the process described in

the conceptual algorithm. That is, the central con-

trol algorithm is merely the implementation of the

portion of the conceptual algorithm that examines

each item within the extracted set of perturbations--

with specific data structures in mind. 26 Note that the

meaning of a perturbation item is expanded here to

include functions that control the emulation process

and that the particular data structure used is merely

a list of actions, each one of which contains informa-

tion of the sort stated in the preceding paragraph. 27

The central control algorithm invokes each action in

turn. The last action in the list is (almost) always

one that advances simulated time to the next ear-

liest time taken from a list of future events (i.e., it

26The data structures consist, in general, of linked lists em-

b .dded within linked lists embedded within linked lists, etc. It is

iz:structive to note that the algorithmic and data structuring tech-

n ques used here, when taken in combinations, form compound

a gorithms (and data structures) that are sometimes recursive,

s,,metimes merely (if maddeningly) convoluted, and very often
t, dious. In other contexts (e.g., in artificial intelligence, in ex-

p _rt and knowledge-based systems, etc.), complex combinations
o these same techniques often take on an aura of mystique. But

i_ dividually they remain quite straightforward.
27The data structure of an action is akin to that of a

c ,mputer instruction. That is, it has a tag by which it can be

a tdressed (usually a time tag), an operation code that specifies
t Je action it is calling for, and operands that identify which

v uriables are to be involved in the action. In this general format,

a _ action is capable of many things. For example, there is an
a tion that examines fictitious registers in order to determine

v hich other actions are being invoked by, say, the gate logic, by

a I external signal originating, say, from an operator's keyboard,

c even by another action.

9

in effect supplies a new, extracted set of actions for

the central control algorithm to invoke). Thus, the

central control algorithm appears to find an endless
list.

The event-scheduling algorithm is invoked by its

corresponding action. Its function is to insert other
actions into a list of future events. The data structure

is that of a linked list. It accommodates the insertion

of events at times not yet in the list and the insertion
of events at times for which other events are already

identified.

The emulated/real host hardware interfacing

algorithms provide the means of using the real hard-

ware of the host computer to perform emulated func-

tions. They map data structures that contain de-

scriptions of (portions of) the emulated system onto

real registers of the host computer. For example, re-

sponding to their corresponding actions, these algo-

rithms transfer data (e.g., diagnostic data) to buffers

and registers for display to users.
Functional-level simulations are provided within

the diagnostic emulation technique to represent the

fetching of data from and the storing of data into
emulated memory. The simulations allow for the

inclusion of time delays and lags. Any number of
additional desired functions can be added by the

definition and addition of appropriate actions to the
list of available actions and the addition of simulation

code to perform the new actions.
No circuit-level simulations are currently pro-

vided within the diagnostic emulation technique.

They must be provided by the users. Of course, they
require the definition of appropriate actions. 2s

Summary

There are, of course, many ways of implement-

ing an emulation or simulation. The diagnostic em-

ulation technique is but one particular, algorithmic

process organized about particular data structures.

It has been sub-microcoded on a horizontally micro-

programmable computer as well as coded in

FORTRAN for a general purpose computer. It may

be compared with other techniques as follows:

1. It contains an emulation scheme at the level

of gate logic--in contrast to most available computer

programs for simulating digital networks at the gate

logic level. The diagnostic emulation technique does

accommodate the (add-on) use of simulations (e.g.,

for representing portions of a system at a higher
functional level of detail, such as the instruction

and register transfer level, or, if needed, at a lower

functional level of detail).

2. It is a generic scheme--in the sense that it

uses a fixed algorithm for all networks emulated

at the gate logic level. Indeed, a network's de-

10

28This capability has been used once in support of an ex-

periment for a doctoral dissertation. A transistor level model of

a gate logic level device was used as a means of examining the

effects of specific faults at the transistor level (see footnote 12).

scription appears as an input data set. Contrast a
generic scheme to what might be called an embed-
ded network scheme, a scheme that compiles (i.e.,

embeds) a system's network description into a com-
puter program. 29

3. It is a hybrid scheme. That is, although
the nominal level of detail is the gate logic level,

the scheme facilitates the representation of different

parts of a digital system at different levels of detail--
usually, for computational efficiency, at a less de-
tailed and more functional level (e.g., memories do

not usually need to be emulated at the gate level),

but also, if needed, at a more detailed level (e.g., a
transistor level description of a device to be faulted).

Flexible extension to other levels of emulation and

simulation is possible by means of user-definable (and

also some predefined) "actions." (See footnote 21.)

This hybrid extension scheme appears to be a spe-
cial feature of the diagnostic emulation technique.

4. It is a quasi event-driven scheme. Following

the completion of an event, simulated time is usu-

ally advanced to the moment of the next scheduled

event, but in time steps of predetermined amount

that correspond to the interval of time for logically

(but not necessarily physically) propagating a sig-
nal through a device. For example, in the emulation

scheme, rather than being evaluated at each possi-
ble increment in time, the output of a gate is eval-

uated only when at least one of the gate's inputs

changes. A similar (scheduling) process is also ap-

plied to more global events. Efficiency is lost, how-

ever, if the scheme is applied to devices with vector-

valued output; for this reason, such devices are better
emulated at a more functional level. 30

5. It is a unit-propagation-delay scheme, for the

most part, in its handling of gates. That is, in its
normal mode of use, all gates are presumed to share

the same propagation delay. However, varied delays
can be accommodated by means of the user-definable

actions.

6. It is mainly a binary-valued scheme, since its

principal data structures accommodate only TRUE
and FALSE values for the outputs of its nominal

primitive devices. However, more complex, multi-
state behavior can be accommodated, at a cost in

running time, by the use of the user-definable actions.

7. Finally, it is a sequential processing scheme
as it has been implemented (in FORTRAN for

general purpose computers and in sub-microcode
for a horizontally microprogrammable computer)-
because of the limitations of the host hardware. How-

ever, there is latent parallelism corresponding to

concurrency among events in the system being em-
ulated. Therefore, with some modifications to the

algorithms, advantages could be gained from special
host hardware.

29For analyzing failure events, generic schemes have several

u_,eful characteristics that embedded network schemes do not.

Tim algorithms of generic schemes are effectively independent of

tte network being emulated and can be implemented directly in

st ecial hardware--under some conditions to an advantage. For

e_ ample, special purpose computers (for verifying system designs

b: emulation at the gate logic level) have been proposed (e.g.,

s_ _. Abrarnovici et al., 1983), have been developed as one-of-a-

k!;ld machines (e.g., see Pfister, 1982 or Koike et al. 1985), and

h :re even become commercially available.

Also, since a generic scheme accommodates different network

d_ finitions by changes to an input data set, the scheme can

rc;_dily accommodate hardware failures that effectively cause a

r_ definition of the network being emulated during the course of

a, emulation. Moreover, the network description as a separate

d ,ta structure that is directly driving the emulation can always

b. readily visible.
An embedded network scheme, on the other hand, would

p esumably require a compilation for each separate network

a bd, therefore, additional validation--or its credibility would be

sr rained. Clearly, embedded network schemes march to a differ-

e Lt drummer; they appear to be more suitable to verification and

v _lidation of software, for which there is no consideration of fail-

u es in the underlying hardware. As an example, see the TRW

(980) report.
3°In event-driven schemes, following the simulation of an

e,ent, simulated time is advanced abruptly to the next (possi-

h y dynamically) scheduled, relevant event(s). No host computer

t me (or resource) is used simulating irrelevant events that occur

d nring the intervening period of time--but at a coat of maintain-

bg a (dynamic) schedule of events. Obviously, there must be

s ,me means of having foreknowledge of the next event(s). When

sLch foreknowledge is not possible, in the simplest scheme that

i: not event-driven, simulated time is incremented by predeter-

r kined amounts. The consequence is that the complexity of dy-

r tmic scheduling is avoided--but at a cost, namely, the cost of

s mulating each device at each step in time to see whether or not

i s output has changed (i.e., to see whether or not an event has

c :curred) in the last increment of time.

The diagnostic emulation technique falls between the two

e<tremes. Events can be forecast; almost all (fixed) increments

c f time contain at least one event, but most increments contain

r _latively few (of all possible) events, and some kinds of events

¢ ua only be forecast in the immediately adjacent interval of time.

11

Appendix A

Modelling Gates

The algorithm for evaluating and updating

the logical states of gates in the diagnostic

emulation technique uses counters to repre-

sent gates. A network of gates of various

types is represented by an identical network of

counters--akin to a directed graph. The algo-

rithm increments (or decrements) the counters

of the network as their inputs change. The
inputs, of course, come from other counters

and represent the changing output values of

gates (and other devices). However, only a
change of a counter's value to or from zero

corresponds to a change in the output value of
the gate it represents--and vice versa. There-

fore, only when a transition of a counter's
value into or out of zero occurs does the al-

gorithm propagate the event as an increment

(or decrement) to other counters indicated by

the network. Consequently, the task of the al-

gorithm is simply to increment (or decrement)
indicated counters, and to indicate which, if

any, other counters are to be incremented (or

decremented) in turn. Repeated use of the

algorithm emulates the behavior, as it varies
with the passage of time, of a network of in-

teracting gates.

The modelling of gates as counters to be incre-

mented (or decremented) as the inputs change is

based on the observation that gates of all types
(namely, AND, OR, NAND, NOR, XOR, NXOR,

NOT, and the simple buffer) may be considered spe-

cial cases of a hypothetical gate (the nmXOR gate 31
and its negation, NnmXOR). The equivalence of the

nmXOR gate (and its negation), for selected values of

the m and n parameters, to the various types of gates

follows from their definitions. For example, the out-

put value of an AND gate having n inputs is defined

to be TRUE when and only when all n of its input
values are TRUE; otherwise it is FALSE. The out-

put of an nXOR gate behaves similarly. As another

example, the output value of an XOR gate is TRUE

when one or the other, but not both, of its two inputs
is TRUE, and otherwise it is FALSE; this is also the

behavior of the output value of a 1XOR gate. Thus,

31 The mXOR gate, read "m out of n exclusive or" gate, has

an output value defined to be TRUE when and only when

any rn (but exactly and only rn) of its n inputs are TRUE;

otherwise its output value is FALSE.

12

a network of the hardware gate types can be con-

ceptually replaced by a network of properly chosen

mXOR gates. (See last paragraph of footnote 17.)
Table A1 contains the set of useful equivalences.

Table A1. Equivalence of Hardware Gates

to nmXOR Gates

Hardware No. of nmXOR
gate inputs gate

AND

OR

NAND

NOR

XOR

NXOR

NOT

BuRr

n

n

2

2

1

1

nnXOR

NOXOR

N,_XOR

°XOR

21XOR

N _XOR

°XOR

_XOR

In turn, an nmXOR gate can be represented by

a counter whose value is the count of the nmXOR
gate's inputs that are TRUE at any given moment.

Consequently, when a gate's output value is TRUE,

the corresponding counter's value is m, and vice

versa; when a gate's output value is FALSE, the

counter's value is some quantity which is not m, and

again vice versa. Clearly, the gate's output value

changes whenever the counter's value changes to or
from m. And again, the converse is true. It is also

convenient to represent the current value of a gate by

an extra bit attached to the corresponding counter.
As long as the bit's value is changed every time the

counter's value changes to or from the critical value

rn, the bit's value will always correctly represent the

gate's output value--assuming, of course, that it was

correct initially. Thus, for example, a simple 9-bit

counter can represent an nmXOR gate with up to

n = 15 inputs (1 bit holds the output value, 4 bits

hold the count, and 4 bits hold the value of the

parameter m, which can be any integer from 0 to 15).
Note that in 2's complement notation a biased

counter (i.e., a counter from which the value of the

parameter m has been subtracted) also can represent

an nrnxoR gate. Unlike unbiased counters, each hav-

ing its own critical value for the parameter m, biased

counters share a common critical value (in particu-

lar, zero) for signalling a change in a gate's output

value. Biased counters do not need to carry along the

value of a parameter m (since it is always zero) and

thereforeneedonly half asmanybits, not counting
theextrabit that holdsthegateoutputvalue.Con-
sequently,a 5-bit biasedcounter(nowcountingthe
extrabit) sufficesto representan nmXOR gate with

up to n = 15 inputs--clearly an improvement on
an unbiased counter. A 7-bit biased counter would

accommodate up to 63 inputs, a number not often

exceeded in real hardware.

In addition, since the value of the extra bit cor-

responds to the gate's output value (which is either

0 or 1), the quantity to be added to the extra bit
to change it to its new value is precisely the incre-

ment (or decrement) to be made in other counters
to which, as indicated by the network, the change

must be propagated. For example, to an extra bit's

value that is 0 (i.e., FALSE) when its biased counter

changes to or from zero the quantity 1 must be added

to yield a new value of 1 (i.e., TRUE). Thus, 1 is ex-

actly the increment to be made in other connected
counters. If the extra bit's value had been 1 (i.e.,

TRUE) and thus needed to change to 0 (i.e., FALSE),

the quantity to be added would have been -1, a

ready-made decrement. Note that the only opera-
tion on a counter is one of addition; decrementing a

counter happens by the addition of a negative incre-
ment to the 2's complement quantity in the counter.

The preceding paragraphs apply equally to

NnmXOR gates when nmXOR is replaced by NnmXOR,
and TRUE, FALSE, 1, and 0 are appropriately

interchanged. The two types of gates are naturally

distinguished because the possible combinations of
the values of a counter and its extra bit are mutually

exclusive--as shown in table A2. Moreover, since

the operation on the counters is the same for nmXOR

and NmXOR gates, knowledge of a gate's type is not
needed after the initial values for the counter and

extra bit are determined.

Table A2. Gate Type as Function of
Extra Bit and Counter Values

Extra bit

value

Gate type for
counter value of--

Zero Nonzero

N_XOR _XOR

_XOR N_XOR

As an illustrative example, consider an OR gate

with the three inputs X, Y, and Z. An OR gate,

of course, is supposed to take on the output value

TRUE when any one or more of its inputs takes on
the value TRUE, as happens, for example, when the

i_put set (XYZ) = (TRUE,TRUE,FALSE). Only
_hen all the inputs have the value FALSE, that

i,, (XYZ) = (FALSE,FALSE,FALSE), does the OR

ate take on the output value FALSE. Of the eight

t ossible combinations of values that the input set
¢an assume, there is only one that corresponds to the

1_gical output value of FALSE, a behavior equivalent

1o the NnmXOR gate with parameters m = 0 and
7, = 3. With the notation 1 and 0 for TRUE and

)'ALSE (for then the count of inputs is simply the
,um of their values interpreted as decimal digits), the

, ounter value C(XYZ), as a function of the inputs
"hat have the value 1 and the bias amount m is

c(xYz) = x + Y + z - m

_ote that the counter can only take on the values

), 1, 2, or 3, and only one value of the counter
:orresponds to the output value 0 (and, in fact,

t is the count value 0), while all other counter

and count) values correspond to the output value 1.
Fherefore, knowledge of the count is equivalent to

._nowledge of the value of the OR gate's output.
As the counter changes from one nonzero value to

_mother (e.g., from 2 to 1), the output value remains

,anchanged; it only changes value when the counter
transitions to or from 0.

Consider that initially X = Z = TRUE and Y =

FALSE (i.e., (XYZ) = (101)). Then,

c(xyz) = C(lOl) = 2

and, since the output value of the OR gate is TRUE,

the extra bit must be 1.

Now imagine that the input set changes to

(XYZ) = (100) (i.e., AZ = -1). The counter takes
on the value

New count = Old count + AX + Ay + AZ

= C(101) + 0 + 0 + (-1)

=2+0+0-1

Since the counter has not transitioned to or from 0,
the extra bit is not changed. But this is exactly the

result that would have been determined from

C(100) =X+Y+Z-m

=1+0+0-0

=1

where also the extra bit would be 1 since the output

value of the OR gate is TRUE.

Imagine again that the input set changes, this

time to (XYZ) = (000) (i.e., AX = -1). Then,

13

Newcount= Oldcount+ AX + Ay + AZ

= C(100) + (-1) + 0 + 0

=1+0+0-1

=0

Since the count has changed to zero, the extra bit
must change. It was 1; it becomes 0. The biased

counter's value becomes 0 with extra bit 0. A

moment's reflection reveals that this is the proper

value. And since the extra bit has changed, an

increment of -1 will be propagated to other counters.

In summary, a real hardware gate can be rep-

resented by an nmXOR gate (or its negation) with

properly selected values of the parameters m and

n. In turn, an _nXOR gate (and its negation) can
be represented by a biased counter (in 2's comple-
ment notation) with an extra bit. After initial val-

ues for the counter and the extra bit have been de-

termined, changes in the counter sometimes generate

increments (or decrements) to propagate on to other

counters in a network. There is only one operation
performed on a counter, and it is common to all coun-

ters (i.e., adding the increments). As a result there is

little complexity in the data structure and processing

algorithm needed to emulate behavior of a gate.

14

Appendix B

Modelling Flip-Flops

The algorithm for evaluating and updating the

logical output values of flip-flops in the diag-

nostic emulation technique uses counters to

represent flip-flops and represents a network of

flip-flops by an identical network of counters.

Of course, to distinguish the input from the

output connections of each counter, the net-

work of counters contains information about

the direction of signal flow. As its inputs

change, a counter's value is changed as a func-

tion of its current value as well as the input

changes. However, only some of the possible

changes of a counter correspond to a change of

a flip-flop's output value. When such changes

occur, their effects are propagated to other

counters indicated by the network. There-

fore, the algorithm's task is simply to change

(according to a transition rule) the values of

indicated counters and to indicate which, if

any, other counters are to be changed in turn.

Thus, repetition of the algorithm provides an

emulation of the behavior, varying with the

passage of time, of a network of interacting

flip-flops.
The reader should notice the wording here

is similar to that in the introductory para-

graph of appendix A on modelling gates. The

similarity is intended to emphasize the com-

monality of the algorithms and the fact that

the two modelling schemes can readily be com-

bined to emulate networks composed of a mix-

ture of gates and flip-flops (and other types of

devices).

32 The state machine is defined to have n÷4 distinct, internal

aspects. Each aspect can be only TRUE or FALSE (but not
both simultaneously); hence, each state is uniquely described

by a binary integer with n+4 bits. Obviously, the integer also
serves as an index on the states. The input variable to the

state machine is defined to be a binary integer of n bits. The

state transition rule is defined in two steps. First, each of the

first n aspects (i.e., the equivalent bits) of the state index is

changed (i.e., either TRUE --* FALSE or FALSE --* TRUE, as

appropriate) if and only if the corresponding bit of the input

variable is TRUE. (Recall that a signal transmitted to a device

indicates whether or not a change has occurred to the variable

in question and not the value of the variable.) Secondly, the

possible change in each of the remaining four aspects (i.e.,

the remaining 4 bits of the state index) is determined as a

function of the integer values of the state index and the input

variable. Thus, the values of the input variable and the state

index together determine a new value for the index.

The representation of flip-flops as counters is

tased on the observation that a flip-flop (whether

L-K, D, R-S, master-slave, with or without preset

_nd/or clear, or triggered on the leading or trailing

(dge of a clock (C1) signal) can be considered as a

, pecial case of a hypothetical flip-flop with n inputs

,,,hose behavior can be described by a comprehensive

1ruth table and, in turn, modelled as a finite-state

l aachine with 2 n+4 states and a compact state tran-

,,ition rule. 32 That is, given a hypothetical flip-flop

type, a state machine can be used to model the be-

l avior of a flip-flop by (1) equating the n inputs, the

two outputs, and two internal, binary-valued quan-

l ities (which have meaning in the case of a master-

,,lave flip-flop) to the n + 4 aspects of the flip-flop

_,tate machine; (2) equating the occurrence of changes

!whether they appear as increments or decrements)

_,f the flip-flop's inputs to TRUE (i.e., 1) values of

he corresponding bits of the machine's n-bit input

",ariable; and (3) using the flip-flop's truth table to

, tetermine the function that maps the state index and

_nput variable into new values for the remaining four

:tspects. All the useful edge-triggered types of flip-

:lops appear to be included in the truth table in ta-

)le B1; the truth table thus defines a single flip-flop

_tate machine with n = 5. 33 Specific flip-flop types

Lre generated from the combined truth table by an

Lppropriate choice of initial values for the unused in-

)ut variables and the option parameters. 34

For example, consider the simple D flip-flop in

_igure B1. (Of course, the flip-flop could be imple-

a_ented as a network of gates as in figure Bl(b)--if

33 For practical purposes n -- 8, since three additional quan-

tities, option selection parameters, are needed. Although not

tnputs, they can be considered inputs which do not change
from their initial condition. They indicate when flip-flops

are (or are not) master-slave types and/or types that have

outputs that are indeterminate in some circumstances.

34 Actually, the basic flip-flop device modelled in the diag-
nostic emulation technique corresponds to only half of a flip-

flop, i.e., it corresponds to only one output's value, either the

Q or the _ value. The lowercase _ is used instead of Q to

emphasize this point. Either output can be obtained by the

same algorithm by simply reversing the P and C input lines

and, similarly, the J and K input lines--as the symmetry in

the truth table in table B1 reveals. When needed, the other

output's value is usually obtained by simply using the com-

plement of the computed output's value. (The data structure

available in the diagnostic emulation scheme for describing

a network of devices contains a convenient capability for in-

verting (i.e., complementing) a signal going from one device

to another.) For flip-flop types for which there is a possibility

of output values that are not complements of each other (e.g.,

see row 1 in table B1), the two output values of the flip-flop

must be separately computed through the use of two "halves"

of a flip-flop.

15

CI b

(a) D flip-flop.

Q

q

D

m

(b) Gate network for D flip-flop.

Figure B1. Components of D flip-flop.

q

Q

16

D CI Q q

* T t t
0 _ 0 1

1 $ 1 0

*Don't care.

t Inactive edge of _:lock signal.

-I-No change.
SActive edge of cl,_ck signal.

(c) Truth t tble.

D

CI

CI

DCI

D

CI

DCI

DCI

101

CI

DCI

D

(d) State transitio_t diagram.

Figure B1. CoI_cluded.

17

_" _"_ 0

_o

0

e_

t_

¢'3

¢3

©

0

+

+

-_- -_- _ --_ --_- I I I _ _ _ _. _ _ _ -_-

c_

©

0

0

there were a need.) 35 The truth table in table B1

generates the same limited, state-machine behavior
as the D flip-flop's truth table (fig. Bl(c)) if the a, (_,

and f_ parameters are preset to 0, the P and C in-

puts are preset to 1, and the K input is considered_

to always equal D in the absence of an actual D in-

put. Also note that for a D flip-flop that is not a
master-slave type, the internal binary quantities are

irrelevant. Hence, only rows 4, 6, and 7 in table B1

are applicable and, for the D, C1, Q, and _ variables,

they are clearly equivalent to the D flip-flop's truth
table. Furthermore, with the assumption that the

output can only be the complement of the Q out-

put, _ is redundant and only 2n+l states are needed
to describe the D fip-flop state machine. Moreover,_

since n -- 2 (i.e., the only inputs are D and Cl; D is

redundant),
2n+l = 23

Hence, a 3-bit integer, corresponding to the triplet of

signals D, C1, and Q, suffices to index (and describe)
the states. Since it is irrelevant (i.e., a matter of

convention) whether the leading or the trailing edge
of the C1 signal is the active edge, assume for the

purpose of this example that the 1 --_ 0 transition
is the active edge. From the truth table, one can

construct the diagram in figure Bled), depicting all
the states and transitions among the states. The

input signals whose changes caused the transitions

are indicated along the arcs connecting the states.

In effect, the "causes" correspond to the values of

the input variable of the machine. 36 (Note that only
those transitions which cross the vertical barrier in

the center of the diagram correspond to changes of

the flip-flop's output value).
In a similar manner, a J-K flip-flop with direct

clear input (see truth table in table B2) can be

35 If there were a need to examine the behavior of the flip-

flop in greater detail (e.g., to observe faulty behavior), the
network of gates in figure Bl(b) could be emulated by only
the gate modelling capability (described in appendix A) of
the diagnostic emulation scheme. Of course, in a network of
flip-flops this would be done with discretion, since it increases
the number of primitive devices being emulated--in this case
of a D flip-flop, for example, by a factor of 6 to 1.
36 Of course, for any interval of time during which no change
occurs to the inputs, the state can be considered either to
remain unchanged or to transition to itself. That is, there
is no behavior to be modelled between transition events;
otherwise, there would be additional recognizable states of
the finite-state machine and something, perhaps the passage
of time, causing changes from these states. If one wished to
describe the process of transition from one state to another in
greater detail, one could define additional tiers of states with
different transition rules. For example, the process of a device
failing in the time interval between normal, state transitions
could be modelled this way.

represented by presetting the a, a, and 13 parameters
t(0 and the P variable to 1 and by choosing the

0 _ 1 transition to be the active edge of the clock

si!,*nal. Rows 3 to 8 (excluding 4) of the combined

truth table (table B1) become the only applicable
rc ws and have the same behavior as the J-K flip-

fl,,p's truth table. The behavior of other useful flip-

fl.)p types can be modelled from the hypothetical flip-

fl)p's truth table. With such equivalences in mind,

a network of flip-flops can be conceptually replaced
b; a network of properly initialized flip-flop state

n achines corresponding to the combined truth table.

Table B2. Truth Table for J-K Flip-Flop With

Clear Direct Input

C J K I C1

0 * *] *

1 o o T
1 0 1 T

1 1 o T
1 1 1 T

• Don't care.

Qn+l qn+l

0 1

Qn -qn
0 1

1 0

qn Qn

TInactive edge of clock signal.

A flip-flop state machine, in turn, can be repre-

s.mted by a counter whose content is the value of the

slate index (or, equivalently, the state descriptor) at

z ny given moment. Changes to the counter value

1_eed (indeed must) only be made when the value of

t he input variable is nonzero (i.e., only when a transi-
t ion event occurs; see footnote 36 for exceptions) and
_,re then made in accordance with the state transition

ules of the flip-flop state machine. That is, changes

lo the first n (the input) bits of the state index are
cietermined directly by the input variable; each is

,imply complemented when the corresponding bit of

he input variable indicates a change. Changes to the

i}its corresponding to the output (and internal) quan-
• ities are determined as a function of the value of the

, ounter and the input variable, and when a change to

.m output quantity does occur, that change is prop-

.tgated to other devices as indicated by the network,

tppearing either as an input variable indicating a

:hange to a particular input (if the device is another

1tip-flop) or as an increment or decrement (if the de-

Ace is a gate). The function is determined, of course,

!'rom the flip-flop state transition diagram; moreover,
t only needs to indicate which transitions correspond

:o a change. For example, the state transition dia-

,_ram for the D flip-flop illustrated in figure Bled) can
Re transformed into the computationally more con-

eenient matrix form in figure B2(a), in which tran-

fitions corresponding to output changes are marked

19

State

000

001

010

011

100

101

110

111

Input Change
C1 D DCI

010 100 110

011 101 111

000 110 101+

000- 111 101

110 000 010

111 001 011

101+ 010 000

101 011 000-

State

C1 DCI

011 111

110 010
Z_Q

+

(a) Device.

Figure B2. State transition matrix

by a "+" or a "-" (i.e., increments or decrements).
Hence, in this case, all the information needed to

specify the function is contained in figure B2(b)--a
useful reduction in data structure. Further, if the

devices (i.e., counters) which provide the inputs to a

flip-flop are evaluated singly and their outputs prop-
agated singly, then an input variable to a state ma-

chine's counter will contain an indication of change to

only one bit of the counter. That is, only n columns

(one for each input signal) of the reduced matrix are

needed. In the D flip-flop example, this corresponds
to saying that none of the transitions labeled DCI will

ever occur. Hence, only the C1 column in figure B2

is needed to specify the transition function. Thus,
the state transition function reduces to a search of a

one-column table. If the value of the counter is found

in the table, the output (i.e., Q) bit of the counter

is complemented and the AQ propagated; if not, no

change is made and no propagation occurs. In a sim-

(b) Truth table.

and compacted function for D flip-flop.

ilar manner, the combined truth table in table B1

implies a complex flip-flop state transition diagram
with an equivalent state transition matrix and a com-

pact function statement that can be implemented as
a simple table search.

In summary, a flip-flop can be modelled as a flip-

flop state machine. In turn, the flip-flop state ma-
chine is naturally represented as a counter with n + 4

bits. After an initial value for the counter has been

determined, changes (as a function of the counter

value and an input variable) to the counter some-

times are accompanied by a need to propagate a sig-

nal to other devices in a network. The only oper-

ation performed on the counter is bit complement-
ing; the function consists of scanning one of a half

dozen tables of few entries. As a result, there is lit-

tle complexity in the data structure and processing
algorithm needed to emulate behavior of a flip-flop.

20

Appendix C

Modelling Tri-State Devices

The algorithm for emulating tri-state de-

vices in the diagnostic emulation technique is

a combination of the algorithm for emulating

gates (described in appendix A) and, with a

slight modification, the algorithm for emulat-
ing flip-flops (described in appendix B). Ac-

cordingly, tri-state devices are represented by

counters (as are gates and flip-flops), and a
network of tri-state devices (and, of course, of

gates, flip-flops, and tri-state devices) is rep-
resented by an identical network of counters.

Also similarly, only some of the changes to

the counter, caused by changes of its inputs,

correspond to changes of the tri-state device's

output values; when such changes occur their

effects are propagated to other devices (i.e.,

counters) indicated by the network. Thus, the

function of the algorithm is the same as that

of the gate and flip-flop algorithms, namely, to

change the value of a counter according to a
transition rule and to indicate which, if any,

other counters of the network are to change as

a consequence.

Modelling of a tri-state device in the diagnostic

emulation technique is based on the observation that
the third state of a tri-state device effectively discon-

nects the tri-state device from the device(s) to which

its output signal would otherwise propagate, and that

forcing and holding the tri-state device's output to

TRUE (or FALSE, depending upon the particular

device) logically achieves the same (disconnection)
effect. Thus, for modelling purposes, the third state

corresponds to the condition of being stuck at one of
the normal, binary values. There are two methods

for doing this in the diagnostic emulation technique.

One method consists of substituting a two-input gate

(an AND or OR gate, depending upon the desired
value of the disabled output) for a tri-state device in

a network description. The second method replaces

a tri-state device with a hypothetical gate-flip-flop

device (for which the disabled output value d is a

parameter).
The two-input gate is the simpler and relatively

obvious method. The two inputs to the tri-state de-

vice (inputs G and E in fig. Cl(a)) become the inputs
to the gate that replaces the tri-state device. No spe-

cial algorithm is needed since the normal gate mod-

elling algorithm (see appendix A) already suffices to

emulate a gate. An OR gate is chosen when the out-

put of the modelled tri-state device must be TRUE to
simulate disconnection. If the tri-state device is of a

sort that disconnects when its enabling input signal is

TRUE, then it is immediately consistent with model-

ling by an OR gate and the enabling input need only

be connected as an input to the OR gate. If, however,
the tri-state device is of a sort that disconnects when

its enabling input signal is FALSE, then to be consis-

tent with modelling by an OR gate the enabling input

signal must be inverted before connection to the OR

gate. (The data structure available in the diagnos-
tic emulation technique for describing a network of

devices contains a convenient capability for inverting

(i.e., complementing) a signal at the input to a de-

vice gate or otherwise.) On the other hand, if the

output of the tri-state device is to be FALSE when
the device is disconnected, then the tri-state device

is represented by an AND gate. In this case and in a

manner analogous to that of the OR gate just men-
tioned, a tri-state device that is disconnected when

its enabling input signal value is FALSE is consistent

with representation by an AND gate and needs no
inversion of the enabling input signal, while one that

disconnects when the enabling input signal value is

TRUE is inconsistent and requires that the enabling

input signal be inverted.

The hypothetical gate flip-flop method is some-
what more complex, but it provides an additional

capability--modelling of stuck-at faults. The method
is based on the observation that a tri-state device can

be described by a truth table (as in figs. Cl(a) and

Cl(b)) and, therefore, modelled by a state transi-
tion diagram as are flip-flops (as described in appen-

dix B). As a consequence, the algorithm developed
for flip-flops can be used by adjoining a tri-state de-

vice's enabling input signal as simply another input

signal to the hypothetical flip-flop's comprehensive
truth table. Since all the other inputs to a flip-flop

are available to represent the G input of a tri-state

device, the counter for holding the state index (see

appendix B) is available for use as the counter for

the gate algorithm (see appendix A). That is, the

implementation details of the algorithms allow rep-
resentation of a device which operates as if it were a

gate (AND, OR, XOR, etc.) with an enabling input

signal. Such a device can then be used to repre-
sent a conventional tri-state device (e.g., a one-input

OR gate with an extra input signal, the enabling

signal)--or it can be used to represent a conventional

gate which can be forced, by the extra signal, to a

predetermined output value (i.e., to act like a stuck-

at gate). 37

37 Of course, the enabling input signal that is used to
emulate a stuck-at fault of a conventional gate does not exist
in the network being emulated. It comes from a fictitious
connection added by the diagnostic emulation technique in
order to introduce the fault.

21

G E Q

g e g
* _ d

*Don't care

G

E

Q

(a) Device. (b) Truth table.

Figure C1. Components of tri-state device.

22

Appendix D

Modelling Busses

In the diagnostic emulation technique, a bus line

is modelled as a gate. 3s Therefore, in a network of

devices to be emulated, each bus line is replaced by

a gate whose inputs are the signals that flowed into

the bus line. The output of the gate, representing

the signal seen on the bus line, becomes the signal

source for all those device inputs that were connected

to the bus line. The gate, of course, does not exist in

the network being emulated; however, it is modelled

just as any real gate of the network. Since the gate

modelling method already described in appendix A

suffices, no additional algorithmic or data structure

complexity is needed for modelling bus lines.

38 The term"bus line" can be misleading. A bus line is

a junction point, an elongated point to be sure, through

which signals travel from the outputs of some devices to the

inputs of others. The use of a bus line requires that devices
attached to it share the property that the signal representing

one of the logical (binary) values is always dominant over

any number of signals representing either the other logical

value or other possible output states of devices (in particular,

the signal corresponding to the third state of a tri-state

device; see appendix C). Given this property, a network is

ordinarily designed so that at any time all but one of the

devices that output to a bus line (i.e., junction point) axe in

a nondominant (and, hence, effectively disconnected) state.

Thus, seen as a signal source, a bus line appears to track

the output value of the one device that is not necessarily

in a nondominant state. Consequently, a bus line can be

represented by either an AND or an OR gate, depending upon

whether the FALSE or the TRUE logic value is dominant.

23

References

Abramovici, Miron; Levende], Ytzhak H.; and Menon,

Premachandran R. 1983: A Logic Simulation Machine.

IEEE Trans. Comput.-Aided Design Integrated Circuits

Syst., vol. CAD-2, no.2, Apr., pp. 82-94.

Anderson, T.; and Lee, P. A. 1981: Fault Tolerance--

Principles and Practice. Prentice/Hall International,
Inc.

Baker, Robert; Mangum, Scott; and Scheper, Charlotte

1988: A Fault Injection Experiment Using the AIRLAB

Diagnostic Emulation Facility. NASA CR- 178390.

Bavuso, S. J.; and Petersen, P. L. 1985: CARE III Model

Overview and User's Guide (First Revision). NASA
TM-86404.

Becher, Bernice 1987: Diagnostic Emulation: Implementa-

tion and User's Guide. NASA CR-178391.

Butler, Ricky W. 1984: The Semi-Markov Unreliability

Range Evaluator (SURE) Program. NASA TM-86261.

Goldberg, Harold 1981: Extending the Limits of Reliability

Theory. John Wiley & Sons, Inc.

Koike, Nobuhiko; Ohmori, Kenji; and Sasaki, Tohru 1985:

HAL: A High-Speed Logic Simulation Machine. IEEE

Design g_ Test Comput., vol. 2, no. 5, Oct., pp. 61-73.

Lomelino, D.; and Iyer, R. K. 1986: Error Propagation in

a Digital Avionic Processor--A Simulation-Based Study.

Proceedings Real- Time Systems Symposium, Inst. of Elec-

trical & Electronic Engineers, pp. 218-225.

Martin Marietta 1981: Digital Avionics Design and Reliabil-

ity Analyzer. NASA CR-181641.

Migneault, Gerard E. 1980: Software Reliability and Ad-

vanced Avionics. AFIPS Conference Proceedings, Vol-

ume 49-1980 National Computer Conference, AFIPS
Press, pp. 715-720.

Nagel, Phyllis M. 1978: Modeling of a Latent Fault Detector

in a Digital System. NASA CR-145371.

Pfister, Gregory F. 1982: The Yorktown Simulation Engine:

Introduction. A CM IEEE Nineteenth Design Automation

Conference Proceedings, IEEE Catalog No. 82CH1759-

0, Inst. of Electrical and Electronics Engineers, Inc.,
pp. 51-54.

Swern, F.; and McGough, J. 1982: Description of the Box

930 Processor at the Gate Logic Level. NASA CR-181642.

TRW Defense & Space Systems Group 1980: Advanced

SMITE Reference Manual. RADC-TR-80-66, U.S. Air

Force, Feb. (Available from DTIC as AD A087 743.)

Wensley, John H.; Larnport, Leslie; Goldberg, Jack; Green,

Milton W.; Levitt, Karl N.; Melliar-Smith, P. M.;

Shostak, Robert E.; and Weinstock, Charles B. 1978:

SIFT: Design and Analysis of a Fault-Tolerant Com-

puter for Aircraft Control. Proc. IEEE, vol. 66, no. 10,
Oct., pp. 1240-1255.

24

Report Documentation Page
NaT_orla_Aeroqa_hcs ,]n_
Space Aom, ni_t raT_or)

1. NAsARep°rtNO.TM_4027 12. Government Accession No. 3. Recipient's Catalog No.

4. Title and Subtitle

On the Diagnostic Emulation Technique and Its Use in
the AIRLAB

7. Author(s)

Gerard E. Migneault

9. Performing Organization Name and Address

NASA Langley Research Center

Hampton, VA 23665-5225

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Washington, DC 20546-0001

5. Report Date

October 1988

6. Performing Organization Code

8. Performing Organization Report No.

L-16397

10. Work Unit No.

505-66-21-03

11. Contract or Grant No.

13. Type of Report and Period Covered

Technical Memorandum

14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

This document is intended primarily as an aid for understanding and judging the relevance of the

diagnostic emulation technique to studies of highly reliable, digital computing systems for aircraft.

Therefore, the document contains a short review of the need for and the use of the technique as well

as an explanation of its principles of operation and implementation. However, details that would be

needed for operational control or modification of existing versions of the technique are not described.

17. Key Words (Suggested by Authors(s))

Emulation

Simulation

Digital simulation

Reliability analysis

Failure analysis

19. Security Classif.(of this report)

Unclassified

18. Distribution Statement

Unclassified-Unlimited

20. Security Classif.(of this page)Unclassified

Subject Category 60

21. No. of Pages 22. Price27 A02
NASA FORM 1626 OCT 86 NASA-Langley, 1088

For sale by the National Technical Information Service, Springfield, Virginia 22161-2171

